Exploring Spin-Transfer-Torque Devices for Logic Applications
نویسندگان
چکیده
منابع مشابه
Spin-transfer torque in nanoscale magnetic devices.
We discuss recent highlights from research at Cornell University, Ithaca, New York, regarding the use of spin-transfer torques to control magnetic moments in nanoscale ferromagnetic devices. We highlight progress on reducing the critical currents necessary to produce spin-torque-driven magnetic switching, quantitative measurements of the magnitude and direction of the spin torque in magnetic tu...
متن کاملThermal spin-transfer torque in magnetoelectronic devices.
We predict that the magnetization direction of a ferromagnet can be reversed by the spin-transfer torque accompanying spin-polarized thermoelectric heat currents. We illustrate the concept by applying a finite-element theory of thermoelectric transport in disordered magnetoelectronic circuits and devices to metallic spin valves. When thermalization is not complete, a spin heat accumulation vect...
متن کاملExploring Boolean and Non-Boolean Computing Applications of Spin Torque Devices
In this paper we discuss the potential of emerging spintorque devices for computing applications. Recent proposals for spinbased computing schemes may be differentiated as ‘all-spin’ vs. hybrid, programmable vs. fixed, and, Boolean vs. non-Boolean. Allspin logic-styles may offer high area-density due to small form-factor of nano-magnetic devices. However, circuit and system-level design techniq...
متن کاملImprovement of spin transfer torque in asymmetric graphene devices.
A graphene lateral spin valve structure with asymmetric contacts is presented for the first time, with enhancement of spin angular momentum absorption in its receiving magnet. The asymmetric device with tunneling barrier only at the injector magnet shows a comparable spin valve signal but lower electrical noises compared to the device with two tunneling barriers. We also report experimental mea...
متن کاملNanomagnonic devices based on the spin-transfer torque.
Magnonics is based on signal transmission and processing by spin waves (or their quanta, called magnons) propagating in a magnetic medium. In the same way as nanoplasmonics makes use of metallic nanostructures to confine and guide optical-frequency plasmon-polaritons, nanomagnonics uses nanoscale magnetic waveguides to control the propagation of spin waves. Recent advances in the physics of nan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
سال: 2015
ISSN: 0278-0070,1937-4151
DOI: 10.1109/tcad.2015.2413852